Складки на ткани пространства-времени

Как с помощью зеркал зафиксировать столкновение черных дыр на другом конце Вселенной

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. Описание момента первой регистрации — в фрагменте из книги Говерта Шиллинга «Складки на ткани пространства-времени».

Эйнштейн видел силу гравитации как «искривление» пространства. Меняя форму, гравитирующие объекты возбуждают волны в пространстве. Когда такая волна оказывается вблизи Земли, наша область пространства «дрожит» — попеременно растягивается и сжимается по мере прохождения сквозь нее гравитационных волн. Однако этот эффект практически незаметен, поскольку сила гравитации — слабое взаимодействие. Гравитационное притяжение объектов, окружающих нас в повседневной жизни, ничтожно. Взмахнув двумя гантелями, вы возбудите гравитационные волны, но пренебрежимо слабые. Даже планеты, вращающиеся вокруг звезд, или взаимно обращающиеся двойные звезды не создают достаточно сильных волн, чтобы их можно было зарегистрировать.

Астрономы пришли к выводу, что источники, доступные для наблюдения LIGO, должны обладать намного более мощной гравитацией, чем обычные звезды и планеты. В идеале это события с участием ЧД (черной дыры — прим. ред.). О существовании ЧД известно почти 50 лет. Большинство являются остатками звезд в 20 и более раз массивнее Солнца. Такие звезды ярко светят и гибнут в катаклизме (о котором свидетельствует вспышка сверхновой), причем их внутренняя часть коллапсирует в ЧД. Звездная материя «изымается» из Вселенной, оставляя на покинутом пространстве гравитационный отпечаток.

Визуализация моделирования сливающихся черных дыр, излучающих гравитационные волны

Две ЧД, которым предстоит образовать двойную систему, постепенно сближаются по спирали. По мере их сближения прилегающее пространство испытывает все большее возмущение, наконец они сливаются в одну вращающуюся ЧД, которая колеблет пространство и «звенит», порождая все новые волны, пока не успокоится и не затихнет. Чирп — сотрясение пространства, ускоряющееся и усиливающееся вплоть до момента слияния ЧД, а затем затухающее, — может зафиксировать LIGO. В нашей Галактике такой катаклизм случается реже чем раз в 1 млн лет. Однако подобное событие порождает сигнал, поддающийся регистрации LIGO, даже если происходит за 1 млрд световых лет от нас — миллионы галактик находятся на меньшем расстоянии. Для обнаружения даже самых благоприятствующих наблюдению событий требуется невероятно чувствительная и очень дорогая аппаратура. В детекторах LIGO пучки мощного лазерного излучения проходят через четырехкилометровые трубы с вакуумом внутри и отражаются от зеркал, установленных в каждом торце труб. Анализируя параметры световых сигналов, можно выявить изменение расстояния между зеркалами, попеременно увеличивающегося и уменьшающегося при расширениях и сжатиях пространства. Амплитуда этого колебания чрезвычайно мала — около 0,0000000000001 см (1х10-13 см), в миллионы раз меньше размера атома. В обсерватории LIGO используется два одинаковых детектора, разнесенных на расстояние 3000 км, — один находится в штате Вашингтон, другой — в Луизиане. Единичный детектор реагировал бы на микросейсмические волны, проезжающие мимо транспортные средства и т. п. Чтобы исключить ложную тревогу, экспериментаторы берут в расчет лишь те события, которые регистрируются обоими детекторами.

Несколько лет LIGO ничего не обнаруживала. Обсерватория была модернизирована и вновь полноценно заработала в сентябре 2015 г., и тогда после десятилетий разочарований пришел успех — был зарегистрирован чирп, свидетельствующий о столкновении двух ЧД более чем в 1 млрд св. лет от Земли. Возникла новая область науки — экспериментальное исследование динамических характеристик пространства…

Колебания ткани пространства-времени несутся сквозь Вселенную. Ничтожное возмущение четырех измерений едва уловимо меняет местное искривление. За минувшие 1,3 млрд лет оно чрезвычайно ослабло, но не исчезло — тихое вибрирующее эхо драматического события, словно отзвук грома, медленно затухающий вдали, когда вспышка молнии давно погасла.

Лазерно-интерферометрическая гравитационная обсерватория LIGO в Ливингстоне, Луизиана, США © ligo.caltech.edu

Гравитационная волна не одинока. Множество одинаковых волн распространяются во Вселенной — во всех направлениях и в широком спектре частот и амплитуд — миллиарды лет. Почти незаметно, но постоянно пространственно-временной континуум колеблется, будто барабанная перепонка. Однако эта волна особенная. Ей суждено стать первой в истории Вселенной гравитационной волной, зарегистрированной людьми.

Мчащаяся сквозь пространство со скоростью 300 000 км/с волна вошла в нашу Галактику около 100 000 лет назад. Она вызывала легчайшую дрожь звезд и планет, двигаясь по Млечному Пути в нашем направлении. В 1915 г., когда Альберт Эйнштейн сформулировал ОТО, ей оставалось преодолеть всего 100 св. лет, чтобы встретиться с маленькой планетой, населенной любознательными существами.

Она приходит с юга. Дата: понедельник, 14 сентября 2015 г. Время: 09:50:45 по Гринвичу. На крохотную часть секунды Земля растягивается и сжимается на 1/10 квинтиллионной доли процента — 1/1021. Все на планете расширяется и сокращается вместе с ней, в том числе лазерно-интерферометрическая гравитационно-волновая обсерватория в Ливингстоне, штат Луизиана, а через 7 мс аналогичный детектор LIGO в Хэнфорде, штат Вашингтон.

Очень скоро все успокаивается. Гравитационная волна продолжает путешествие в дальние пределы глубокого космоса. Через 1,3 с она пересекает орбиту Луны и через несколько часов покидает Солнечную систему, продолжая слегка деформировать все, что оказывается на ее пути.

Понедельник, 14 сентября 2015 г., — самый обычный день. В Лондоне родители певицы и композитора Эми Уайнхаус, наверное, оплакивают свою талантливую дочь, которая сегодня праздновала бы 32-летие, если бы не покончила с собой чуть больше 4 лет назад. Специалисты по космонавтике, любящие историю, поминают советский космический зонд «Луна-1» — первый рукотворный объект на другом небесном теле, — разбившийся о лунную поверхность ровно 56 лет назад. Но для большинства людей это ничем не примечательный день.

В то утро исследователь-постдокторант Марко Драго в одиночестве сидит в своем кабинете в Институте Альберта Эйнштейна в Ганновере. Он изучает физику в итальянской Падуе, родном городе Галилео Галилея, одним из первых изучавшего гравитацию, в свободное время играет на пианино Моцарта и Бетховена и пишет фэнтези — уже опубликовал два романа о драконах и мальчике по имени Марко (drago по-итальянски — «дракон»).

Примерно в 11:54 по местному времени в ящик электронной почты Драго падает письмо. Это автоматическое оповещение линии передачи данных LIGO: множество таинственных цифр и автоматически сгенерированных гиперссылок. Очевидно, программа обнаружила какую-то аномалию около трех минут назад. Интересно.

Принятый впервые в истории сигнал гравитационной волны, GW150914, зарегистрированный детекторами LIGO в Хэнфорде (вверху) и в Ливингстоне (внизу). На графиках показана наблюдаемая амплитуда волн (изменение как относительная величина) как функция времени. И амплитуда, и частота увеличиваются со временем; это характерный профиль настоящего сигнала гравитационной волны. Жирные линии — реальные измерения, тонкие — «прогнозные значения», полученные из теоретических расчетов слияния двух ЧД массами 36 и 29 солнечных масс

Драго переходит по одной из гиперссылок. На экране раскрываются графики выходного сигнала детектора. Он знает, как они должны выглядеть: волнистые линии, соответствующие невообразимо слабым движениям зеркал из аморфного кварца, подвешенных в концах плеч интерферометра. Конечно, сейсмический шум. Даже в LIGO невозможно добиться абсолютной неподвижности зеркал с точностью до одной десятитысячной размера атомного ядра.

На сей раз все иначе. Шум присутствует, но на него накладывается гораздо более сильный сигнал: синусоидальная волна, попеременно вздымающаяся и опускающаяся. Она колеблется все более размашисто и часто, быстро слабеет и исчезает, оставив только фоновый шум. Все происходит примерно за десятую долю секунды и наблюдается не только в Ливингстоне. В Хэнфорде то же самое — несколькими миллисекундами позже. Не просто интересно — очень интересно!


 

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. Момент первой регистрации признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга «Складки на ткани пространства-времени» — захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной. 

Издательство: «Альпина»

На сайте могут быть использованы материалы интернет-ресурсов Facebook и Instagram, владельцем которых является компания Meta Platforms Inc., запрещённая на территории Российской Федерации