Новости

Нейронная сеть смоделировала процесс зрительного поиска

Ученые из Института математических проблем биологии РАН создали осцилляторную нейронную сеть, которая воспроизводит время реакции человека в задачах зрительного поиска.

Экспериментальные данные показывают, что в работе мозга существенную роль играет динамика электрической активности различных нейронных структур и их взаимодействие в процессе решения задач. Нейробиологи проявляют большой интерес к математическим моделям нейронной динамики, ожидая от них новых идей в объяснении механизмов памяти, внимания, распознавания, и т.д. Построенная сотрудниками лаборатории нейронных сетей Института математических проблем биологии РАН модель осцилляторной нейронной сети дает понимание, как в мозге происходит одно из типичных когнитивных действий - процесс зрительного поиска и нахождения искомого объекта. Результат опубликован в журнале Neural Networks

На вопрос о роли колебаний при обработке информации в мозге пока нет определенного ответа. Однако накапливающиеся экспериментальные данные дают все больше убедительных свидетельств того, что в основе механизмов когнитивных процессов лежит колебательная активность и ее синхронизация в различных структурах мозга. Ученые из Института математических проблем биологии РАН создали нейронную сеть, элементами которой являются осцилляторы (системы совершающие колебания), представляющие сравнительно большие нейронные ансамбли. Один из осцилляторов играет роль центрального управляющего элемента (ЦУЭ), а другие осцилляторы, называемые периферическими, представляют различные зрительные объекты. Периферические осцилляторы взаимодействуют с центральным элементом с помощью прямых и обратных связей. Взаимодействие организовано таким образом, что периферические осцилляторы конкурируют за синхронизацию с ЦУЭ. Победитель этой конкуренции – это и есть нейронный представитель зрительного объекта, который в данный момент включен в фокус внимания. В терминах модели целевой объект отличается от других объектов тем, что соответствующий ему периферический осциллятор оказывает большее синхронизующее влияние на центральный управляющий элемент и таким образом имеет большую вероятность быть включенным в фокус внимания.

В экспериментах по зрительному поиску испытуемому предъявляется изображение на компьютерном дисплее, содержащее некоторое число объектов. Задача испытуемого состоит в том, чтобы определить, есть ли на изображении так называемый целевой объект, т.е. объект обладающий заранее заданными признаками. Например, в качестве изображения может использоваться набор букв "T" и "L" красного и зеленого цвета в разной ориентации, а целевым объектом является буква "T" красного цвета. При обнаружении целевого объекта испытуемый нажимает определенную клавишу на клавиатуре, а при отсутствии целевого объекта – другую клавишу. Таким образом измеряется время реакции и изучается, как это время зависит от числа объектов на изображении и от степени заметности целевого объекта на фоне других объектов. Эксперименты показывают, что зависимость времени реакции от числа объектов имеет линейный характер, а трудность задачи зрительного поиска отражается в угле наклона линии по отношению к горизонтальной оси: чем труднее задача, тем больше угол наклона.

Яков Казанович, заведующий лабораторией нейронных сетей ИМПБ РАН прокомментировал: «С помощью компьютерных вычислений было показано, что наша модель может воспроизводить данные о времени поиска для задач различной степени сложности, при этом имеет место линейная зависимость времени поиска от числа объектов на изображении, наблюдаемая в экспериментах».

Разработанная модель предлагает простое и неожиданное объяснение для весьма сложного когнитивного процесса. В данное время нет прямых экспериментальных данных, показывающих, что колебательная активность и ее синхронизация имеют отношение к решению задачи зрительного поиска, хотя связь внимания с синхронизацией активности различных нейронных структур продемонстрирована в значительном числе экспериментов. Модель демонстрирует, что осцилляторные процессы и различные режимы синхронизации обладают большими потенциальными возможностями по обработке информации. Это должно стимулировать нейробиологов в дальнейшем поиске экспериментальных подтверждений участия осцилляторных процессов в реализации когнитивных функций.

Читайте также
Почему снежинка шестиугольная
Почему снежинка шестиугольная
Снежинка — это просто кристаллик льда. Но почему она шестиугольная?
Москве угрожает «Таня»! Кто и зачем дает имена циклонам?
Москве угрожает «Таня»! Кто и зачем дает имена циклонам?
Выясняем у экспертов, кто дает циклонам человеческие имена
Все переплетено, но не предопределено
Все переплетено, но не предопределено
Анахорет пытается заказать пушку, стреляющую очень маленькими элементарными частицами.