Новости

Koмпьютep научили виртуально «химичить»

Группа учёных из МФТИ, НИИ автоматики имени Н. Л. Духова и Сколтеха под руководством Артёма Оганова применила метод машинного обучения для моделирования поведения алюминия и урана при различных температурах, давлениях и в разных фазовых состояниях. Моделирование химических систем позволяет предсказывать их свойства в различных условиях до проведения экспериментов, что в дальнейшем даёт возможность воплотить в реальность наиболее перспективные материалы. Результаты опубликованы в журнале Scientific Reports.

Сейчас самый популярный метод моделирования основан на использовании набора параметров, описывающих рассматриваемую биохимическую систему: дли́ны связей в молекулах, углы между атомами, заряды и т. д. — так называемый «метод силовых полей». Однако использование этого метода не позволяет точно воспроизводить квантово-механические силы, которые действуют в молекулах. Кроме того, точные квантово-механические расчёты занимают много времени, не позволяют рассчитывать свойства больших систем и ограничиваются парой сотен атомов.

Огромный интерес представляют модели машинного обучения. Обучаясь на относительно небольшой выборке данных (получаемых в квантово-механических расчётах), эти модели затем могут быть использованы вместо квантово-механических расчётов, поскольку обладают такой же точностью, но требуют примерно в тысячу раз меньше вычислительных ресурсов, чем квантово-механические расчёты.
Учёные применили машинное обучение для моделирования межатомных взаимодействий в кристаллах и расплавах двух элементов: алюминия и урана. Алюминий является хорошо изученным металлом с известными физико-химическими свойствами. Уран был выбран, наоборот, из-за наличия разнящихся опубликованных данных о его физико-химических свойствах и желания исследователей эти свойства уточнить.

В ходе данной работы с помощью обученной модели исследователи изучали такие свойства, как плотность фононных состояний, энтропия и температура плавления алюминия.
Иван Круглов, сотрудник лаборатории компьютерного дизайна материалов МФТИ, рассказывает: «Величины сил межмолекулярных взаимодействий атомов в кристаллах можно успешно применять для предсказания поведения атомов этого элемента при других температурах и в других фазовых состояниях, а также, наоборот, — зная свойства системы в жидком фазовом состоянии, узнать поведение атомов в кристаллической решётке. Таким образом, появляется возможность расчёта фазовой диаграммы урана на основании данных о его кристаллической структуре. Показывая состояние вещества в зависимости от давления и температуры, фазовые диаграммы позволяют определять возможности и границы применения элементов».

Основным критерием достоверности виртуально полученных данных являлось их сравнение с экспериментальной информацией. Использованный метод моделирования показал хорошую точность полученных виртуально данных. Информация, полученная методом машинного обучения, имеет меньшие погрешности, чем методы моделирования, использующие силовые поля.

Данное исследование заключается в повышении скорости и точности моделирования систем атомов методом машинного обучения, предложенным авторами в 2016 году. Работа сделана при поддержке Российского научного фонда.

Читайте также
Судно «Академик Мстислав Келдыш» открывает мрачные тайны Арктики
Судно «Академик Мстислав Келдыш» открывает мрачные тайны Арктики
40 лет судно «Академик Мстислав Келдыш» служит науке. Рассказываем о морских исследованиях Арктики
Как и зачем читают наши мысли?
Как и зачем читают наши мысли?
Устройство для чтения мыслей по активности мозга уже создано: это нейроинтерфейс «мозг — компьютер».
«Зарезвились на просторе радикалы». К юбилею Николая Семенова
«Зарезвились на просторе радикалы». К юбилею Николая Семенова
В 25 лет он пообещал получить Нобелевскую премию и сделал это в 60. Физикохимику Семенову — 125 лет.