Статьи
Статья

Нобелевку дали ученым, раскрывшим секрет мятной конфетки

 

Нобелевская премия по физиологии и медицине за 2021 год присуждена за открытие рецепторов температуры и осязания. Призовой фонд в 10 млн шведских крон ($1,1 млн) разделят между собой ученые из США Дэвид Джулиус и Ардем Патапутян. Рассказываем о важности этого открытия.

От наших чувств к рецепторам

Когда мы идем босиком по росе, то ощущаем одновременно тепло солнца, дыхание ветра, чувствуем текстуру травы, ее температуру и влажность. Когда залезаем в ванную с температурой выше 43 °C, то тут же выскакиваем из воды — горячо! От леденца с ментолом во рту становится холодно, а еда с перцем всегда согревает. Почему так происходит? Каким образом наш организм реагирует на окружающую среду? Это одна из великих загадок, с которой сталкивается человечество, отмечается в пресс-релизе Нобелевского комитета.

Дэвид Джулиус и Ардем Патапутян проводили свои исследования в США независимо друг от друга и ответ искали в области молекулярной биологии. Джулиус из Калифорнийского университета сосредоточился на реакции человеческих клеток на температуру и после продолжительных экспериментов с острым перцем чили (а точнее, веществом капсаицин) отыскал в мембране клеток человека своеобразный «датчик тепла» — рецептор TRPV1, особый чувствительный белок, который похожим образом реагирует на повышенную температуру и жгучий вкус. В опытах было установлено, что мыши-мутанты с дефицитом TRPV1 меньше реагируют на горячее и, кроме того, у них снижена способность воспринимать боль, вызванную воспалениями и онкологическими болезнями.

Дэвид Джулиус посвятил около 20 лет жизни изучению этих рецепторов: исследовал их механизмы, трехмерное устройство, определил 3D-структуру и указал на применение. Сегодня рецептор TRPV1 — один из самых знаменитых в этой области. Он сам и связанные с ним ионные каналы уже сегодня могут служить в медицине: они являются целями для разработки новых обезболивающих препаратов.

Другой нобелевский лауреат — уроженец Ливана армянского происхождения Ардем Патапутян, который много лет работает в Калифорнии в Институте Скриппса, — исследовал рецепторы осязания. Он и его команда провели долгие поиски и отсмотрели большой список генов-кандидатов, ответственных за механическое воздействие, прежде чем смогли идентифицировать единственный ген, чье подавление сделало клетки нечувствительными к прикосновениям. Так был открыт новый и совершенно неизвестный механочувствительный ионный канал, получивший название Piezo1 (от греческого слова, обозначающего давление). Благодаря сходству с Piezo1 был открыт второй ген, названный Piezo2.

Позже выяснилось, что Piezo2 играет также ключевую роль в критически важном восприятии положения и движения тела. Оба открытых канала Piezo регулируют такие важные физиологические процессы, как артериальное давление, дыхание и контроль мочевого пузыря. Впоследствии независимо друг от друга Дэвид Джулиус и Ардем Патапутян использовали ментол для идентификации TRPM8 — рецептора, который, как было доказано, активируется холодом. Проще говоря, они нашли ответ на вопрос, почему мятные конфетки имеют прохладный вкус.

В целом революционные открытия рецепторов TRPV1, TRPM8 и каналов Piezo позволили нам понять, как тепло, холод и механическая сила рождают нервные импульсы, через которые человек имеет возможность воспринимать окружающий мир и адаптироваться к нему. Эти знания станут фундаментом для разработки новых методов лечения широкого спектра заболеваний. В том числе это может помочь людям с редкой мутацией, которые не ощущают боль и не реагируют на температуру.

Победу Дэвида Джулиуса и Ардема Патапутяна можно было предугадать, так как в 2020 году они получили еще одну авторитетную награду — премию Кавли, которую часто называют «преднобелевской премией».

Сбылись ли пророчества?

Имена лауреатов Нобелевской премии по физиологии и медицине стали известны сегодня во время прямой трансляции на канале «Наука». Собеседник Алексея Семихатова — кандидат физико-математических наук, старший научный сотрудник Института биоорганической химии РАН, сооснователь и главный редактор проекта «Биомолекула» Антон Чугунов — прокомментировал это событие в режиме реального времени.

«Мне очень приятно услышать эти результаты, — сказал эксперт, — потому что я знаком с этими рецепторами, работаю с ними, изучаю. Интересно, что Clarivate Analytics (компания, которая ежегодно пытается предсказывать результаты Нобелевской премии, составляя список самых цитируемых ученых. — Прим. ред.) хотя и не угадала в очередной раз, но все-таки первый кандидат тоже был рецепторный. Стало быть, вопрос рецепторов привлекает довольно большое внимание».

Чугунов отметил, что и другой эксперт, мнение которого мы публиковали недавно в обзоре «Кто получит Нобелевскую премию — 2021?», тоже почти угадал — правда, он говорил о практическом применении открытых рецепторов. «В материале сайта канала "Наука" я увидел, что научный журналист Алексей Паевский высказал одно из предположений о том, что Нобелевскую премию должны дать за оптогенетику. И как раз с рецептором ТRP, который открыл Джулиус, связана другая область, которую разрабатывают в нашем институте, — она называется "термогенетика". Ее разрабатывает Всеволод Белоусов (я уверен, что ему сегодня много раз позвонят), он работает с этим самым рецептором ТRP: встраивает его в те нейроны, в которых его нет. Зачем? Чтобы можно было их активировать температурой, в том числе с медицинскими целями.

Есть способы нагревать очень прицельно отдельные участки внутри тела — микроволнами, или ультразвуком, или еще чем-нибудь. И тогда можно заставить работать некоторые нейронные контуры, которые функционируют не так, как нужно. В перспективе это поможет в лечении разных неврологических заболеваний, до которых сейчас не добраться. Потому что, чтобы до них добраться, надо что-то сделать с нейронами, которые у нас спрятаны где-то в мозгах или глубоко внутри тела. При помощи генетических технологий можно эти рецепторы доставить в эти нейроны, а при помощи физических технологий заставить их работать так и тогда, как нам нужно, и разработать новый протокол лечения. Так что фундаментальные изучения рецепторов обязательно находят или найдут в будущем практические применения».

Чугунов отметил, что изучение рецепторов, представляющих собой в большинстве случаев мембранный белок, стало возможным только в новейшее время — в связи с развитием технологий. «Мы существа многоклеточные, у нас 100 трлн клеток (грубо говоря), и в каждой клетке есть обязательно мембрана, то есть это то, куда она заключена, — объяснил эксперт. — В этой мембране находятся рецепторы, которые отвечают за все межклеточные коммуникации. В том числе за все чувства, которые у нас есть. Размеры белка очень маленькие — это 5–10 нанометров, его невозможно увидеть глазом и даже в микроскоп. В микроскоп мы можем увидеть 200 нанометров в лучшем случае, а молекула — в 10–20 раз меньше.

Поэтому, чтобы его изучать, потребовались очень сложные современные технологии, которые появились только в последние несколько десятков лет: это и рентгеноструктурный анализ, и ядерный магнитный резонанс, и криоэлектронная микроскопия... Все эти методики позволили изучить эти рецепторы, и благодаря им в том числе были сделаны эти достижения, которые сегодня отметил Нобелевский комитет. Также понадобилось компьютерное моделирование — пусть оно не изучает молекулы напрямую, но зато позволяет моделировать то, что не будет доступно экспериментальным методом, скорее всего, никогда».

Напоминаем, что завтра состоится объявление лауреатов по физике. Смотрите прямую трансляцию на канале «Наука» в 12:25!

Кто получит Нобелевскую премию — 2021?

Нобелевская премия — 2020: миллион долларов за поимку «ласкового убийцы»

Читайте также
Объявлены имена лауреатов Нобелевской премии — 2021 по медицине
Объявлены имена лауреатов Нобелевской премии — 2021 по медицине
Премия присуждена за открытие рецепторов температуры и осязания.
Чем штамм «Дельта» удивил ученых
Чем штамм «Дельта» удивил ученых
Более 1000 россиян умирают от коронавируса ежедневно. К чему приведут мутации SARS-CoV-2?
Новая российская вакцина заточена на борьбу с будущими штаммами коронавируса
Новая российская вакцина заточена на борьбу с будущими штаммами коронавируса
Штамм коронавируса «Дельта» снизил эффективность вакцин. Но на подходе новая, более универсальная.